Archivos de la categoría TIC

Tecnologías de la Información y las Comunicaciones.

GOES R- Sistema de observación mundial

Los paradigmas conservacionista tienen que tener en cuenta el factor humano, ya que la Tierra, es nuestra casa. La ayuda de la tecnología espacial y el avance del procesamiento de lo datos obtenidos de los sensores ópticos, de campo y de frecuencias nos permite preveer catastrofe a escala global.

Los satélites ambientales, tanto geoestacionarios como en órbita polar, forman parte de una creciente y siempre más integrada red mundial de sistemas de observación de la Tierra denominada Sistema de Sistemas de Observación Global de la Tierra (Global Earth Observation System of Systems, GEOSS).

Ilustración de los satélites que se incorporarán a la red mundial de observación ambiental satelital entre 2010 y 2020.
Ilustración de los satélites que se incorporarán a la red mundial de observación ambiental satelital entre 2010 y 2020

GEOSS forma parte de un esfuerzo internacional por coordinar y brindar a los usuarios de todo el mundo la información que necesitan para vigilar el ambiente, los recursos, el tiempo y el clima de la Tierra en beneficio de la sociedad y en apoyo al desarrollo sostenible.

Diagrama conceptual de los componentes del Sistema Mundial de Observación (SMO) apoyado por la OMM (Organización Meteorológica Mundial).
Diagrama conceptual de los componentes del Sistema Mundial de Observación (SMO) apoyado por la OMM (Organización Meteorológica Mundial)
cam02183
Area de instalación de Sensores Solares en Cordillera de Los Andes (Uspallata). Campus Tecnológio – Educativo del Instituto de Estudios Científicos y Tecnológicos Andinos (IECyTA).

El programa SMO apoyado por la Organización Meteorológica Mundial (OMM) ayuda a las naciones del mundo a compartir sus observaciones meteorológicas, climáticas y ambientales, y otras observaciones relacionadas. Tales observaciones apoyan los análisis, pronósticos, boletines y avisos meteorológicos, las observaciones climáticas y las actividades relacionadas en los servicios meteorológicos y ambientales en todo el mundo.

Ver Informe en PDF de  Sistema Mundial de Sistemas de Observación de la Tierra (GEOSS)

mabientalismo

CARACTERÍSTICAS TÉCNICAS EQUIPOS Y SENSORES EN TIERRA.

Fuente: http://www.goes-r.gov/

SKA Selecciona el diseño final del plato

SKA Selects The Final Design Of The SKA Dish

SKA-at-night
An artist impression of the full SKA at night, with the selected Panel Space-frame supported Metal (PSM) SKA dish design in the foreground.
SKA Global Headquarters, UK – The Square Kilometre Array (SKA) Project has selected the design for its dish, opening up the way for the eventual production of hundreds of dishes that will make up the world’s largest radio telescope.

“This decision is a major milestone towards delivering the SKA,” said Alistair McPherson, Head of Project at SKA Organisation “Being able to “see” what the SKA dishes will look like for the first time is a big satisfaction for all involved.”

Three antenna concepts were built to be considered for the design of the SKA dish: DVA-1 in Canada, DVA-C in China, and MeerKAT-1 in South Africa. All three were constructed using different technology from the different partners, representing the very best in radio telescope dish technology currently available.

The consortium then presented the following designs for study:

An innovative Single Skin, Rim supported Composite (SRC) concept led by the National Research Council of Canada (NRC), along with SED Systems of Canada and RPC Composites of Australia.
An optimised Panel, Space-frame supported Metal (PSM) concept, led by a Shijiazhuang, China based team composed of JLRAT/CETC-54 along with their European partner, MT Mechatronics (MTM) of Mainz, Germany
A five-strong selection panel of engineering experts in the fields of composites, radio telescope antennas and systems engineering assessed both designs on a series of indicators including surface accuracy, feasibility of on-site manufacturing and ability to maintain structural integrity over long time-frames and made a unanimous recommendation that the Chinese PSM concept should be selected for the SKA dishes, a recommendation that was then approved by the SKA Dish Consortium Board.

DVA-1 prototype antenna built at NRC’s Dominion Radio Astrophysical Observatory (DRAO) just outside of Penticton, BC, Canada

NRC -National Research Council
DVA-1 prototype antenna built at NRC’s Dominion Radio Astrophysical Observatory (DRAO) just outside of Penticton, BC, Canada
The SKA Dish Consortium, made up of institutes from Australia (who leads the consortium), Canada, China, Germany, Italy and South Africa is responsible for the design and verification of the dish that will make up SKA-mid, one of two SKA instruments. In its first phase of deployment (SKA1), SKA-mid will be initially composed of 133 15-metre diameter dishes providing a continuous coverage from 350 MHz to 14 GHz.

One of the greatest challenges faced by the consortium is the mass production of hundreds of these dishes, all with identical performance characteristics, and built to last and tolerate the harsh conditions of the remote arid areas in which they will operate for 50 years. Combined with achieving a large high precision collecting area at a competitive price, it’s a formidable technical and engineering challenge.

“We’re confident the selected design will perform well in the harsh conditions of the Karoo in South Africa and will deliver the precision that the scientific community needs to answer the questions they’re trying to solve” said Roger Franzen, SKA Dish Consortium Lead.

“The next step for us is to build and test a prototype at the South African site” he continued.

wang feng
Mr. Wang Feng, Vice Chairman of CETC54, inspects the first mould out of 66 that will be needed for SKA-P
The detailed design and manufacturing of such prototype, called SKA-P, is led by JLRAT/CETC54 in collaboration with the European companies MTM and Società Aerospaziale Mediterranea (SAM), and the Assembly, Integration and Verification of SKA-P will be done on site together with SKA SA team.

“We expect the installation of SKA-P on the ground to happen by spring 2017”, said Roger Franzen. “Once satisfied with its performance, the project will be in a good position to go to tender and issue the contract for the mass production of 133 dishes to make up SKA1-mid.”

Beyond the design of the dish structure, the consortium is also tasked with designing and testing optics, receivers and other elements of the dish. As part of that process, NRC continues its valuable contributions to single pixel feed (SPF) receivers/digitizers and cryogenic low noise amplifiers (LNAs).

About the SKA

The Square Kilometre Array (SKA) project is an international effort to build the world’s largest radio telescope, led by SKA Organisation. The SKA will conduct transformational science to improve our understanding of the Universe and the laws of fundamental physics, monitoring the sky in unprecedented detail and mapping it hundreds of times faster than any current facility.

The SKA is not a single telescope, but a collection of telescopes or instruments, called an array, to be spread over long distances. The SKA is to be constructed in two phases: Phase 1 (called SKA1) in South Africa and Australia; Phase 2 (called SKA2) expanding into other African countries, with the component in Australia also being expanded.

Already supported by 10 member countries – Australia, Canada, China, India, Italy, New Zealand, South Africa, Sweden, The Netherlands and the United Kingdom – SKA Organisation has brought together some of the world’s finest scientists, engineers and policy makers and more than 100 companies and research institutions across 20 countries in the design and development of the telescope. Construction of the SKA is set to start in 2018, with early science observations in 2020.

Mr. Wang Feng, Vice Chairman of CETC54, inspects the first mould out of 66 that will be needed for SKA-P

About the Design process

In 2013, the SKA Organisation sent out requests to research organisations and commercial partners around the world to help design the SKA. Eleven international teams – called consortia – were established and each tasked with designing a critical element of the project, with each consortium composed of partners who are leaders in their fields.